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Abstract
Numerical comparisons of the acceptance bandwidths for
quasi-phase-matched Eω

ZEω
Z –E2ω

Z (ee–e) and Eω
Y Eω

Y –E2ω
Z (oo–e)

second-harmonic generation processes in bulk periodically poled LiNbO3
(PPLN) are given. The larger acceptance bandwidths and grating periods for
the latter process lower the fabrication constraints, especially in the
short-wavelength region, and also enhance the frequency conversion
efficiency. The corresponding (oo–e) quasi-phase-matching conditions in
bulk PPLN are discussed for different fundamental wavelength regions.
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1. Introduction

Quasi-phase-matching (QPM) [1–6] permits noncritical
phase matching in nonlinear optical interactions through
compensation of the relative phase mismatch by regular
domain inversion, which is based on a periodic domain grating
built into the nonlinear medium by periodically changing the
spontaneous polarization of the crystal. The main advantage
of QPM is that noncritical phase matching can be used at
any wavelength within the transparency range of the nonlinear
material by appropriate choice of the period for the domain
inversion, which can greatly broaden the range of application.
Additionally, QPM permits noncritical phase matching with
the largest nonlinear coefficient of the nonlinear optical crystal,
without the need for strictly orthogonal polarizations. A
great number of experiments have already been performed
with QPM [2–6]. LiNbO3 is an ideal nonlinear material
for QPM, with a transparency range from 0.35 to 5.0 µm,
covering the visible, near-infrared and mid-infrared regions.
We have successfully realized domain inversion [7] with a
6.5 µm period by periodic electric poling in Z -cut LiNbO3 at
room temperature, where the three interacting beams propagate
along the x-axis of the crystal, with each beam polarized

parallel to the z-axis of the crystal (extraordinary rays).
About 18 mW of cw 0.532 µm green light was obtained
at 5 ◦C, instead of 190 ◦C, with 1.1 W of cw 1.064 µm
pump power from an Nd:YAG laser and with end coupling.
This corresponds to a normalized conversion efficiency of
1.5% cm−1 W−1.

The main reason for the relatively low conversion
efficiency in our experiment is due to the departures from
ideal QPM periodicity. The QPM temperature shift in
our experiment is a result of a fabrication error in the
grating period [8]. It is particularly difficult to maintain
the uniformity of the QPM grating, especially in the short-
wavelength region. The shorter the period is, the narrower the
acceptance bandwidth for QPM second-harmonic generation
(SHG). Higher-order QPM Eω

Z Eω
Z –E2ω

Z (ee–e) SHG (which is
called QPM(e) SHG hereinafter) is always used to alleviate
this fabrication constraint since larger periods can be used.
However, in this case, the effective nonlinear coefficient is
reduced by a factor of m, where m is an odd number of the
QPM order (for a 50% duty-cycle grating).

In this paper we suggest a new QPM method using
input waves with perpendicular polarizations, instead of
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using the same polarization but higher-order QPM waves.
The influence of polarization on the full-width-at-half-
maximum (FWHM) acceptance bandwidth of QPM SHG
performance will be investigated. The advantages of this
new QPM approach is revealed through numerical comparison
of the acceptance bandwidths for QPM(e) SHG and QPM
Eω

Y Eω
Y – E2ω

Z (oo–e) SHG (called QPM(o) SHG hereinafter) in
periodically poled lithium niobate (PPLN) at a temperature
of 150 ◦C, and the same result is also suitable for QPM SHG
at other temperatures at which photorefractive damage can be
avoided in LiNbO3. In [9], QPM of perpendicular polarization
waves with the d24 coefficient was used to increase the
acceptance bandwidth of SHG in periodically poled KTP; i.e.,
the process was Eω

Y Eω
Z –E2ω

Y instead of Eω
ZEω

Z –E2ω
Z , which is used

for QPM SHG with the d33 coefficient. In periodically poled
LiNbO3, the highest nonlinear coefficient d33 is frequently
used in QPM(e) technology. However the lower acceptance
bandwidth and the short grating period reduce the performance
of the QPM parametric process. To solve this problem,
QPM(o) with d31 has been employed for LiNbO3 [10].

The organization of this paper is as follows. In section 2,
we introduce the parametric FWHM acceptance bandwidth
theory of QPM SHGs in bulk PPLN. In section 3, we give
results based on the numerical comparison of acceptance
bandwidths and grating periods for collinear SHG interactions
with two kinds of QPM method. We also discuss different
phase matching conditions for QPM(o) SHG in different
fundamental wavelength regions. The periods and effective
nonlinear coefficients of third-order QPM(e) SHG and first-
order QPM(o) SHG are then discussed. In section 4, the whole
work is summarized.

2. FWHM acceptance bandwidth theory of QPM
SHG in bulk PPLN

Assuming low conversion efficiency, loose focusing of the
pump laser in the sample, cw interaction and no loss of the
fundamental and second-harmonic waves, the periodically
modulated nonlinear coefficient can be expressed [11, 12] by
the Fourier expansion

d(x) = def f

∞∑
m=−∞

2

mπ
sin

(
mπl

∧
)

exp

(
−i

mπ

∧ z

)
(1)

where def f is the effective nonlinear coefficient of SHG in
single-domain bulk material, � is the period of the modulated
structure, l the length of the reversed domain and integer m is
the order of the QPM interaction. For mth-order QPM (m is
an odd number) and a perfect duty cycle D = l/� = 1/2, the
mth-order grating wavevector is km = 2πm/�, so from the
theory of conventional birefringent phase matching the QPM
can be described with the substitutions

dQ = def f
2

πm
(2)

and

�kQ ≡ �k − km = k2 − 2k1 − km = π

lc
− km

= 4π(n2 − n1)

λ
− 2πm

�
(3)

where dQ is the amplitude of the relevant harmonic of
d(x), �kQ is the total wavevector mismatch while �k is
the wavevector mismatch due to material dispersion, k1 and
k2 are the fundamental and second-harmonic wavevectors,
respectively, and lc = λ/4(n2 − n1) is the coherent
length. Here n1 and n2 are the indices of refraction for the
fundamental and second-harmonic waves at the given QPM
temperature, respectively, and are determined by the Sellmeier
equations [8, 13].

In Z -cut PPLN, assuming that the three interacting beams
propagate along the x-axis of the crystal, the nonlinear
polarization leading to second-harmonic generation in terms
of d can be described by equation (4) below, where the
polarization components of the fundamental wave along the y-
and z-axes will contribute to the SHG with different nonlinear
coefficients:

Pz(2ω, t) = d31 E2
y(ω, t) + d33 E2

z (ω, t). (4)

In addition, the conversion efficiency η of QPM SHG
is proportional to (dQ)2 and sinc2(�kQ L/2), as shown in
equation (5):

η ∝ (dQ)2 ∗ sin c2(�kQ L/2) (5)

where sin c(�kQ L/2) ≡ sin(�kQ L/2)/(�kQ L/2).
For QPM collinear interaction in a PPLN crystal of length

L containing uniform domain inversion grating periods, the
phase-matching condition can be altered by changing the
input wavelength or the operating temperature of the sample
according to equation (3). It is important when designing
QPM devices to understand how sensitive the phase-matching
condition (and thus the conversion efficiency) is to these
changes.

2.1. Wavelength acceptance bandwidth

The phase-matching factor [11, 12] in the expression for
the power conversion efficiency is sinc2(�kQ L/2). To
calculate the wavelength acceptance bandwidth, we consider
SHG interaction at a fixed temperature (a similar procedure
is followed to calculate wavelength acceptance bandwidths
for difference frequency generation (DFG), sum frequency
generation (SFG) and optical parametric oscillation (OPO)).
A desired pump wavelength (i.e. fundamental wavelength),
λ1,peak is chosen. The QPM period which satisfies the phase-
matching equation at that wavelength is designed and fixed for
the QPM device. The value of λ1 is then increased slightly
from λ1,peak and the second-harmonic wavelength λ2 is equal
to half the fundamental wavelength λ1. The phase mismatch
�k(λ1) at this new wavelength is calculated according to the
following equation:

�kQ = 4π(n2 − n1)

λ1
− 2π

�
. (6)

The value λ1,H M at which the conversion efficiency λ1

falls to half of its maximum value is calculated by solving the
equation

sin2 [�kQ(λ1,H M)L/2]

[�kQ(λ1,H M)L/2]2
= 1

2
. (7)
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Figure 1. Period of PPLN versus fundamental wavelength at
150 ◦C, for first-order QPM(e) and QPM(o) SHG.

The pump wavelength acceptance bandwidth (δλ)1,FW H M for
the interaction is given by

(δλ)1,FW H M = 2(λ1,H M − λ1,peak). (8)

Equation (7) shows that the bandwidth is inversely proportional
to crystal length. In the acceptance bandwidth calculation of
section 3, we shall assume a standard crystal length of 1 cm.

2.2. Temperature acceptance bandwidth

In contrast to the wavelength acceptance bandwidth,deviations
in the temperature acceptance bandwidth result from (�kQ L),
where �kQ is changed by the index dependence on operating
temperature, while the thermal expansion can also change
the period � and length L of PPLN devices. The
temperature acceptance bandwidth is calculated as follows: the
fundamental and second-harmonicwavelengths, λ1 and λ2, are
chosen, and the QPM period required for phase matching at the
desired operating temperature is calculated. The temperature
is then allowed to deviate from this optimum value. The phase
mismatch as a function of temperature is calculated from the
following equation:

�kQ = 4π[n2(T ) − n1(T )]

λ1
− 2π

�(T )
. (9)

The indices and dispersion of the fundamental and second-
harmonic ordinary beam and extraordinary beam at any
wavelength in the transparency range of LiNbO3 can be
obtained numerically from the Sellmeier equation [8, 13] for
a given QPM temperature. The temperature dependence of
the QPM period is then calculated from the thermal expansion
equation

δl = α · � · δT (10)

where α is the linear coefficient of thermal expansion. In
LiNbO3, α is equal to 1.54 × 10−5 [13]. The temperature
acceptance bandwidth is then calculated just as the wavelength
acceptance bandwidth was calculated above. This acceptance
bandwidth is also, to a good approximation, inversely
proportional to crystal length L.
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Figure 2. The wavelength acceptance bandwidths of PPLN versus
fundamental wavelength, 150 ◦C, for the first-order QPM(e) SHG
and for the first-order QPM(o) SHG.

3. Numerical calculation of acceptance bandwidths
and grating periods for interactions with two
different polarizations

To investigate the polarization dependence of the QPM SHG
collinear interaction in bulk PPLN, we calculate the grating
periods for first-order QPM(o) SHG and first-order QPM(e)
SHG, and give a numerical comparison of their wavelength and
temperature acceptance. For QPM(e) SHG n1 and n2 are the
indices of the fundamental extraordinary and second-harmonic
extraordinary light,while for QPM(o) SHG n1 and n2 represent
the indices of the fundamental ordinary and second-harmonic
extraordinary light, respectively.

From the equation of the grating period, � = λ/2
(n2 − n1), we can plot the grating period versus fundamental
wavelength from 0.76 µm to 1.09 µm, as shown in figure 1.
Here we see that, for the same order QPM SHG, the longer
the fundamental wavelength, the larger the QPM period.
Moreover, the domain period for first-order QPM(o) SHG is
longer than that for first-order QPM(e) SHG, which facilitates
the fabrication of QPM devices, decreases the possibility
of phase mismatching and thus can improve the conversion
efficiency.

From equations (6)–(8), the wavelength acceptance
bandwidths for first-order QPM(o) and QPM(e) SHG are
shown in figure 2.

In figure 2, we find that the wavelength acceptance
bandwidths for the first-order QPM(o) SHG are greater
than those for the first-order QPM(e) SHG at the same
fundamental wavelength, λ, especially at longer wavelengths;
wavelength bandwidths increase at the long wavelengths in
which LiNbO3 has the lower dispersion, which improves the
SHG performance.

When the QPM temperature is given at 150 ◦C,
calculated by equation (9) and (10) and the same method
as the calculation of wavelength acceptance bandwidth, the
temperature acceptance bandwidths are obtained as shown in
figure 3.

From figure 3, we can obtain results similar to those shown
in figure 2: at the same fundamental wavelength λ and the
same temperature 150 ◦C, the tunable temperature acceptance
bandwidth for first-order QPM(o) SHG is larger than that for

326



Polarization dependence of QPM SHG in bulk PPLN

0.7 0.73 0.76 0.79 0.82 0.85 0.88 0.91 0.94 0.97 1 1.03 1.06 1.09
0

1

2

3

4

5

6

7

8

9

10

11

12

T
em

pe
ra

tu
re

 b
an

dw
id

th
[c

en
tig

ra
de

-c
m

]

Fundamental wavelength[micron]

QPM temperature bandwidth for SHG,150 centigrade

QPM(e) SHG
QPM(o) SHG
          
        

Figure 3. The temperature acceptance bandwidths of PPLN versus
fundamental wavelength, 150 ◦C, for the first-order QPM(e) SHG
and for the first-order QPM(o) SHG.

Figure 4. Refractive indices of PPLN for second-harmonic
extraordinary light and fundamental ordinary light versus
fundamental wavelength at 150 ◦C.

first-order QPM(e) SHG, while for the same type of QPM
SHG, the temperature acceptance bandwidth increases as the
wavelength becomes longer.

From the above analysis, we see that the tolerance of
QPM(o) SHG is larger than that of the same order QPM(e)
SHG. Moreover, the phase matching condition for QPM(e)
SHG in bulk PPLN is related to the fundamental wavelength,
as shown in figure 4.

When n2(e) = n1(o), where n2(e) and n1(o) represent
the refractive indices of the second-harmonic extraordinary
light and the fundamental ordinary light, respectively, the
fundamental wavelength λ is equal to about 1.13 µm,
corresponding to critical phase matching. When n2(e) >

n1(o), then λ < 1.13 µm and the fundamental wave is in the
shorter-wavelength region, so the QPM period takes positive
values. In the longer wavelengths where λ > 1.13 µm, the
period is negative, which implies that n2(e) < n1(o). In this
paper we only investigate the performance of QPM(o) SHG in
the visible region.

It is also important to compare higher-order QPM(e)
SHG, such as the third order, with the first-order QPM(o)
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Figure 5. The periods of PPLN versus fundamental wavelength,
150 ◦C, for the first-order QPM(o) SHG and for the third-order
QPM(e) SHG.

SHG. From equations (4) and (1), we know that QPM(e)
SHG and QPM(o) SHG utilize the nonlinear coefficients d33

and d31, respectively. The corresponding mth-order effective
nonlinear coefficients are dQ(e) = (2d33/πm)2 and dQ(o) =
(2d31/πm)2, respectively. As shown in figure 1, it is clear that
the periods are larger for the QPM(o) SHG than for the QPM(e)
SHG of the same order at a given temperature. We also find
that, at the same temperature, the periods for the first-order
QPM(o) SHG are almost the same as, or larger than, those for
the third-order QPM(e) SHG. The comparison between them
is shown in figure 5.

For example, at 150 ◦C, for blue SHG pumped by a
laser with a wavelength of 0.946 µm, the period for first-
order QPM(o) SHG is about 14.5 µm, which is larger than
the 13.5 µm period for the third-order QPM(e) SHG. The
theoretical ratio of the conversion efficiencies of the two
processes is dQ3(e)/dQ1(o) = (2d33/π · 3)2/(2d31/π · 1)2 =
(27/3)2/82 = 1.26 (assuming d33 = 27, d31 = 8) [14].
However, the larger grating period and FWHM acceptance
bandwidth of QPM(o) SHG ensures better uniformity of
domain inversion and higher quality of the QPM SHG
performance, which makes higher conversion efficiency
possible.

4. Conclusion

In this paper a new QPM SHG method with perpendicular
polarization waves rather than parallel polarization waves
is proposed. A comparison of the tuning properties of
QPM(o) SHG and QPM(e) SHG in bulk PPLN is given. The
dependence of phase-matching FWHM acceptance bandwidth
on temperature and wavelength and the relevant tuning
curves are calculated, which manifests the polarization
dependence of QPM SHG. The results show that the various
acceptance bandwidths can be significantly enhanced for QPM
interactions through use of the proper polarization rather than
by simply using the higher-order traditional QPM(e) SHG with
the same polarization waves.

At a given temperature, the domain grating period for
the first-order QPM(o) SHG is larger than that for QPM(e)
SHG of not only the first order, but also the third order,
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which allows much better uniformity of the domain-inversion
grating and lowers the device fabrication constraints. The
polarization dependence of QPM SHG can also be applied
to other QPM nonlinear parametric processes, such as optical
parametric oscillation (OPO), sum frequency generation (SFG)
and different frequency generation (DFG).
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